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Historically second predates first:
@ Linear and nonlinear H* control (Zames, 1981, Glover and Doyle,
1988, Helton and James, 1999)
@ Robust properties of risk-sensitive control (Jacobson, 1973, D, James
and Petersen, 2000, Hansen and Sargent, 2001 & 2008)
e Current work (Atar, Budhiraja, D and Wu, see also D, Katsoulakis,
Pantazis and Rey-Bellet 2018)
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Elements of the framework

@ Probability models, on space S, often a path space

P = nominal (computational, design) vs @ = true (impractical)

@ Performance measures, for f : S — R
Eq[f] = Eq[f(X)]

Here f may combine a cost with dynamics that take random variables
under @ (or P) into the system state:

)
Fw) = /0 c(Glwl(t))dt,

G: W — X, dX(t)=b(X(t))dt+ dW(t).
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Elements of the framework

@ A notion of distance between models, here taken to be relative
entropy, aka Kullback-Leibler divergence:

riqp) = { Folls ] = fsloa (i) Qo) @ <P

Defines neighborhoods of P via {Q: R(Q||P) <r}. R(-|-) is
jointly convex and Isc, R(Q||/P) >0 and =0 iff Q = P.

e Optimality (tightest bounds with respect to neighborhoods). This
automatically introduces nonlinearity, akin to Legendre transform.

E.g., if performance measure Eg[f], Lagrange multipliers lead to
quantities like

Ap(A, f) = Sgp[Eo[f] —AR(Q[P)].
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Elements of the framework

@ The mapping f : S — R may include parameter a € A to optimize
f = f,. Then may want to solve problems like

min max  Eplf.].
a€A Q:R(Q|IP)<r Q[ ]

In a dynamical setting also consider optimal control under model
uncertainty, and often with @ and P measures on the “driving noise.”

o Key is the variational formula relating Qol under @ with functional of
Pis
log Ep || = sup [cEqlf] ~ R(Q|IP)].
Q«P
Hence whenever Q < P,
cEq[fl]< R(Q|P)+log Ep [e‘:f} .

Minimizing Q* is dQ* = eCfdP/feCfdP.
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Example: how parts come together
Suppose f = f, with a € A and we want to solve “optimally robust

optimization”: with r > 0 fixed

min  max  Eg[f,].
a€A Q:R(Q|IP)<r

Then using Lagrange multipliers (A =1/¢)

min [mgxmi (ot + 2t~ R@11P)))]

acA

= min [mlgmgx(Eo[fl—mmP)) 1]

acA

1
= minmin — (r + log Ep [eCfaD .
acA c>0 C

Final problem phrased purely in terms of the design model, with nice

properties in c.
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If for some fixed performance requirement B < oo we find r such that

1
min min — (r + log Ep [ecﬂ*D = B.
acA c>0 C

Then with o* the minimizer
Eqlfar] < B

forall Q: R(Q||P) < r, and r is largest possible value.
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Special case: uncertain model aspects of Jacobson’s LEQG. In the
70s Jacobson introduced the linear/exponential /quadratic/Gaussian
formulation of control design. Here choose m(-,-) to minimize in

-
S%(x0) = i,r:f E {expc/O ((X(s), QX(s)) + (u(s), Ru(s))) ds
with u(s) = m(X(s),s) and
dX(s) = AX(s)ds + Bu(s)ds + CdW(s), X(0) = xo.
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Special case: uncertain model aspects of Jacobson’s LEQG. In the
70s Jacobson introduced the linear/exponential /quadratic/Gaussian
formulation of control design. Here choose m(-,-) to minimize in

-
S%(x0) = i,r:f E {expc/O ((X(s), QX(s)) + (u(s), Ru(s))) ds
with u(s) = m(X(s),s) and
dX(s) = AX(s)ds + Bu(s)ds + CdW(s), X(0) = xo.

For optimal feedback control m a PDE argument gives

1
E log S°(x0)

T _ ) ) 1 (T
—supE [ | (x).0%()) + @) Rasp) o~ ¢ [ o)1 ds} |
where sup over progressively measurable v and

dX(s) = AX(s)ds + Bu(s)ds + Cv(s)ds + CdW(s), X(0) = xo.



Stochastic uncertain systems with ordinary performance

Thus for any v

T - -
£ / ((X(s), QX(s)) + (a(s), Ru(s))) ds
0
)
< E/ Iv(s)] ds + = log S (x0).
0 C

Can use v to represent model error [e.g., if Ax should be Ax + Ca(x) take

v(s) = a(X(s))].



Deterministic uncertain systems with ordinary performance

H>°-control (state space formulation, adapted to context). A completely
deterministic approach uses

(s) = Ad(s) + Bu(s) + Cv(s), ¢(0) = xo,

with u(s) = m(é(s),s) and v(s) : [0, T] — R¥ a “disturbance.” The
control m(-,-) is chosen to minimize in
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H>°-control (state space formulation, adapted to context). A completely
deterministic approach uses

¢(s) = Ap(s) + Bu(s) + Cv(s), ¢(0) = xo,

with u(s) = m(é(s),s) and v(s) : [0, T] — R¥ a “disturbance.” The
control m(-,-) is chosen to minimize in

. T _ _ 1 >
Vi) = inf sup | [ ((0(5). Qato)) + (u(s) Ra(s) — 5 I ) ]
If m is a minimizer, then for any disturbance v

.

T 1 )
| (051, @01} + tulo). Ru(s)) ds < [ - [(s) ds + Vi),
0 0

Here an original motivation was that v could represent model error [e.g., if
Ax should be Ax + Ca(x) use v(s) = a(¢(s))].
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probability under the true).



Stochastic uncertain systems with rare event perfomance

The variational bound based on relative entropy

cEolf] < R(Q|P) + log Ep [eﬂ

is not useful when Eg[f] is determined by rare events (e.g., escape
probability under the true). What is a good replacement for

1 1
Loz p [¢] = sup |Eolf] - TR(Q1P)?
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Recent variational formula relates risk-sensitive Qol and Rényi divergence.
Let 0 < 8 <. Then

1 [l _ 1 prl_ 1
st ] = e [Seno [+7] - 15k @),

where for mutually absolutely continuous P, Q@ and o > 1

Ra(QIIP) = o | (;’g) 4Q.

As 5 | 0 recover relative entropy formula. Bounds on risk-sensitive Qol for
various @ at level 3 in terms of one at level v in terms of design:

1 1 1
— log Eq [eﬁf] < —logEp [evf} + ——R.»
B gl "=

R (@IP)



Rare event performance measures and Rényi divergence

Some qualitative properties of Rényi divergence:
@ Bounds independent of underlying probability space (data processing
inequality)
@ A chain rule for product measures, but not for Markov measures

@ However, bounds still scale with meaningful limits large time/system
size (Rényi rate), even for Markov measures

@ Quantity one would optimize over in robust design (here ) appears

also in Riﬁ(Q |P). Complicates formulation of robust optimization
7
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Fix a class of models Q (e.g., {Q : Ri(Q||P) < r}) and define

gla) =sup{R.(Q|P): Qe Q}, ac(l o).

Theorem

Under integrability conditions on f,

\Q

) 1

Bf - g(”
sup —Iog Ege”" < |nf F(ﬁ 7)., F(B.7) =
Qe B v

Qm

and the infimum over v is a convex minimization problem.

7 Iog Ep [e”f}
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Fix a class of models Q (e.g., {Q : Ri(Q||P) < r}) and define

gla) =sup{R.(Q|P): Qe Q}, ac(l o).

Theorem
Under integrability conditions on f,

\Q

~—

g
supglogEQer<|an(6 V), F(B,7) = 7( ) 7|og15p[e7f}

Qe

Qm

and the infimum over v is a convex minimization problem.

As with ordinary performance measures, there is an optimization/control
generalization. Also, the bounds scale properly with time, and one can
consider infinite time problem with Rényi divergence rate.



Rare event performance measures and Rényi divergence

Example: Optimal optimization/control of tail behavior with model
uncertainty

Design model:

A1

Az

Ad

Hd

Arrivals are Poisson with rates (intensities) \;, service (when allocated to
i) are exponential with mean 1/p;, and control is which class to serve.

Significant criticism of the model: exponential interarrival and (especially)
service times.



Rare event performance measures and Rényi divergence

Let X;(t) be queue length at time t under some control, X"(t) = 1 X(nt),

and consider as tail-type performance measure

Epef S aXi(T),

*On the risk-sensitive cost for a Markovian multiclass queue with priority, Atar,
Goswami, Shwarz, 2014.
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Let X;(t) be queue length at time t under some control, X"(t) = 1 X(nt),
and consider as tail-type performance measure

EpeP Sy aXP(T).
Then when n — oo one can show optimal to allocate service time to solve

{Z[A eﬁC:_le(l_eBC/ >O Zpl]‘}

i=1

This can be implemented via
prioritize service according to largest (1 — e~ 7)),

a risk-sensitive analogue of pc rule.* But what if not P?

*On the risk-sensitive cost for a Markovian multiclass queue with priority, Atar,
Goswami, Shwarz, 2014.
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We consider the robust problem with non-exponential service/interarrival
distributions, e.g., hazard rate.

True model: Let h;; and h;»> denote hazard rates for times between
arrivals and services for class i, and assume

hia(-)

a1 < v <bj1, ap<

hia(+)

i Hi

< bio,

and let Q be corresponding family of models. Then for Q@ € Q we have
Ra(Qpo,n7] HP[o,,,T]) < nTgo(a)

with the constraint tight for some such @, and

d d
80(@) =) [ka(ain) V ka(bi))INi + > [ka(@i2) V ka(bi2)] i,
i=1 i=1
with
x¥—ax+a-—1

halx) = a(a—1)
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For min/max optimum with regard to Q, should solve

. <7%/>’> L d
min ¢ ———>+ =Y [\ie —pip(1— €T ip; >0, pi=10,
TP 7= i=1

where min is over v > (3 and {p;}.



Summary

@ Risk-sensitive control and relative entropy give a useful approach to
certain problems of optimization under model uncertainty for ordinary
costs.

o Costs based on rare events require a different approach, and we
propose a related one based on risk-sensitive control and Renyi
divergence.

@ Initial applications are to control of queuing models to handle, among
other things, old complaints regarding service time distributions.

@ Tightness of the bounds, in the sense that there is a model within Q
for which the bounds give equality, has been established for some
circumstances (e.g. 5 > 0 small), but is an area that needs more
investigation.
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