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Three settings for robust optimization/control

Stochastic uncertain systems with ordinary performance measures

Deterministic uncertain systems subject to �disturbances�, with
ordinary performance measures

Stochastic uncertain systems with rare event perfomance measures

Historically second predates �rst:

Linear and nonlinear H1 control (Zames, 1981, Glover and Doyle,
1988, Helton and James, 1999)

Robust properties of risk-sensitive control (Jacobson, 1973, D, James
and Petersen, 2000, Hansen and Sargent, 2001 & 2008)

Current work (Atar, Budhiraja, D and Wu, see also D, Katsoulakis,
Pantazis and Rey-Bellet 2018)
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Stochastic uncertain systems with ordinary performance

Elements of the framework

Probability models, on space S, often a path space

P = nominal (computational, design) vs Q = true (impractical)

Performance measures, for f : S ! R

EQ [f ] = EQ [f (X )]

Here f may combine a cost with dynamics that take random variables
under Q (or P) into the system state:

f (w) =
Z T

0
c(G[w ](t))dt;

G :W ! X ; dX (t) = b(X (t))dt + dW (t):
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Stochastic uncertain systems with ordinary performance

Elements of the framework

A notion of distance between models, here taken to be relative
entropy, aka Kullback-Leibler divergence:

R (Q kP ) =
�
EQ
�
log dQdP

�
=
R
S log

�dQ
dP (s)

�
Q(ds) if Q � P

1 else.

De�nes neighborhoods of P via fQ : R (Q kP ) � rg.

R (� k�) is
jointly convex and lsc, R (Q kP ) � 0 and = 0 i¤ Q = P.
Optimality (tightest bounds with respect to neighborhoods). This
automatically introduces nonlinearity, akin to Legendre transform.
E.g., if performance measure EQ [f ], Lagrange multipliers lead to
quantities like

�P (�; f ) = sup
Q
[EQ [f ]� �R (Q kP )] :
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Stochastic uncertain systems with ordinary performance

Elements of the framework

The mapping f : S ! R may include parameter � 2 A to optimize
f = f�. Then may want to solve problems like

min
�2A

max
Q :R(QkP )�r

EQ [f�]:

In a dynamical setting also consider optimal control under model
uncertainty, and often with Q and P measures on the �driving noise.�
Key is the variational formula relating QoI under Q with functional of
P is

log EP
h
ecf
i
= sup
Q�P

[cEQ [f ]� R (Q kP )] :

Hence whenever Q � P,

cEQ [f ] � R (Q kP ) + log EP
h
ecf
i
:

Minimizing Q� is dQ� = ecf dP=
R
ecf dP.
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Stochastic uncertain systems with ordinary performance

Example: how parts come together
Suppose f = f� with � 2 A and we want to solve �optimally robust
optimization�: with r > 0 �xed

min
�2A

max
Q :R(QkP )�r

EQ [f�]:

Then using Lagrange multipliers (� = 1=c)

min
�2A

�
max
Q
min
c>0

�
EQ [f�] +

1
c
[r � R (Q kP )]

��
= min
�2A

�
min
c>0

max
Q

�
EQ [f�]�

1
c
R (Q kP )

�
+
1
c
r
�

= min
�2A

min
c>0

1
c

�
r + log EP

h
ecf�

i�
:

Final problem phrased purely in terms of the design model, with nice
properties in c .



Stochastic uncertain systems with ordinary performance

Example: how parts come together
Suppose f = f� with � 2 A and we want to solve �optimally robust
optimization�: with r > 0 �xed

min
�2A

max
Q :R(QkP )�r

EQ [f�]:

Then using Lagrange multipliers (� = 1=c)

min
�2A

�
max
Q
min
c>0

�
EQ [f�] +

1
c
[r � R (Q kP )]

��
= min
�2A

�
min
c>0

max
Q

�
EQ [f�]�

1
c
R (Q kP )

�
+
1
c
r
�

= min
�2A

min
c>0

1
c

�
r + log EP

h
ecf�

i�
:

Final problem phrased purely in terms of the design model, with nice
properties in c .



Stochastic uncertain systems with ordinary performance

If for some �xed performance requirement B <1 we �nd r such that

min
�2A

min
c>0

1
c

�
r + log EP

h
ecf�

i�
= B:

Then with �� the minimizer

EQ [f�� ] � B

for all Q : R (Q kP ) � r , and r is largest possible value.
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Stochastic uncertain systems with ordinary performance

Special case: uncertain model aspects of Jacobson�s LEQG. In the
70s Jacobson introduced the linear/exponential/quadratic/Gaussian
formulation of control design. Here choose m(�; �) to minimize in

Sc (x0) = inf
m
E
�
exp c

Z T

0
(hX (s);QX (s)i+ hu(s);Ru(s)i) ds

�
with u(s) = m(X (s); s) and

dX (s) = AX (s)ds + Bu(s)ds + CdW (s); X (0) = x0:

For optimal feedback control m a PDE argument gives
1
c
log Sc (x0)

= sup
v
E
�Z T

0

�

�X (s);Q �X (s)

�
+ h�u(s);R�u(s)i

�
ds � 1

c

Z T

0
kv(s)k2 ds

�
;

where sup over progressively measurable v and

d �X (s) = A�X (s)ds + B�u(s)ds + Cv(s)ds + CdW (s); X (0) = x0:
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Stochastic uncertain systems with ordinary performance

Thus for any v

E
Z T

0

�

�X (s);Q �X (s)

�
+ h�u(s);R�u(s)i

�
ds

� 1
c
E
Z T

0
kv(s)k2 ds + 1

c
log Sc (x0):

Can use v to represent model error [e.g., if Ax should be Ax + Ca(x) take
v(s) = a( �X (s))].



Deterministic uncertain systems with ordinary performance

H1-control (state space formulation, adapted to context). A completely
deterministic approach uses

_�(s) = A�(s) + Bu(s) + Cv(s); �(0) = x0;

with u(s) = m(�(s); s) and v(s) : [0;T ]! Rk a �disturbance.�The
control m(�; �) is chosen to minimize in

V (x0) = inf
m(�;�)

sup
v

�Z T

0

�
h�(s);Q�(s)i+ h�u(s);R�u(s)i � 1

2c
kv(s)k2

�
ds
�
:

If m is a minimizer, then for any disturbance vZ T

0
(h�(s);Q�(s)i+ hu(s);Ru(s)i) ds �

Z T

0

1
2c
kv(s)k2 ds + V (x0):

Here an original motivation was that v could represent model error [e.g., if
Ax should be Ax + Ca(x) use v(s) = a(�(s))].
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Stochastic uncertain systems with rare event perfomance

The variational bound based on relative entropy

cEQ [f ] � R (Q kP ) + log EP
h
ecf
i

is not useful when EQ [f ] is determined by rare events (e.g., escape
probability under the true).

What is a good replacement for

1
c
log EP

h
ecf
i
= sup
Q�P

�
EQ [f ]�

1
c
R (Q kP )

�
?



Stochastic uncertain systems with rare event perfomance

The variational bound based on relative entropy

cEQ [f ] � R (Q kP ) + log EP
h
ecf
i

is not useful when EQ [f ] is determined by rare events (e.g., escape
probability under the true). What is a good replacement for

1
c
log EP

h
ecf
i
= sup
Q�P

�
EQ [f ]�

1
c
R (Q kP )

�
?



Rare event performance measures and Rényi divergence

Recent variational formula relates risk-sensitive QoI and Rényi divergence.

Let 0 < � < . Then

1

log EP

h
ef
i
= sup
Q�P

�
1
�
log EQ

h
e�f
i
� 1
 � �R


��
(Q kP )

�
;

where for mutually absolutely continuous P;Q and � > 1

R�(Q kP ) =
1

�(�� 1) log
Z
S

�
dQ
dP

���1
dQ:

As � # 0 recover relative entropy formula. Bounds on risk-sensitive QoI for
various Q at level � in terms of one at level  in terms of design:

1
�
log EQ

h
e�f
i
� 1

log EP

h
ef
i
+

1
 � �R


��
(Q kP ):
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Rare event performance measures and Rényi divergence

Some qualitative properties of Rényi divergence:

Bounds independent of underlying probability space (data processing
inequality)

A chain rule for product measures, but not for Markov measures

However, bounds still scale with meaningful limits large time/system
size (Rényi rate), even for Markov measures

Quantity one would optimize over in robust design (here ) appears
also in R 

��
(Q kP ). Complicates formulation of robust optimization



Rare event performance measures and Rényi divergence

Fix a class of models Q (e.g., fQ : R1(Q kP ) � rg) and de�ne

g(�) = supfR�(Q kP ) : Q 2 Qg; � 2 (1;1):

Theorem
Under integrability conditions on f ,

sup
Q2Q

1
�
log EQ e�f � inf

��
F (�; ); F (�; ) =

24g
�


��

�
 � � +

1

log EP

h
ef
i35 ;

and the in�mum over  is a convex minimization problem.

As with ordinary performance measures, there is an optimization/control
generalization. Also, the bounds scale properly with time, and one can
consider in�nite time problem with Rényi divergence rate.
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Rare event performance measures and Rényi divergence

Example: Optimal optimization/control of tail behavior with model
uncertainty
Design model:

Arrivals are Poisson with rates (intensities) �i , service (when allocated to
i) are exponential with mean 1=�i , and control is which class to serve.
Signi�cant criticism of the model: exponential interarrival and (especially)
service times.



Rare event performance measures and Rényi divergence

Let Xi (t) be queue length at time t under some control, X n(t) = 1
nX (nt),

and consider as tail-type performance measure

EP e�
Pd
i=1 ciX

n
i (T ):

Then when n!1 one can show optimal to allocate service time to solve

min

(
dX
i=1

[�ie�ci � �i�i (1� e�ci )]+ : �i � 0;
dX
i=1

�i = 1

)
:

This can be implemented via

prioritize service according to largest �i (1� e��ci );

a risk-sensitive analogue of �c rule.� But what if not P?

�On the risk-sensitive cost for a Markovian multiclass queue with priority, Atar,
Goswami, Shwarz, 2014.
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Rare event performance measures and Rényi divergence

We consider the robust problem with non-exponential service/interarrival
distributions, e.g., hazard rate.

True model: Let hi ;1 and hi ;2 denote hazard rates for times between
arrivals and services for class i , and assume

ai ;1 �
hi ;1(�)
�i

� bi ;1; ai ;2 �
hi ;2(�)
�i

� bi ;2;

and let Q be corresponding family of models. Then for Q 2 Q we have

R�(Q[0;nT ]
P[0;nT ] ) � nTg0(�)

with the constraint tight for some such Q, and

g0(�) =
dX
i=1

[k�(ai ;1) _ k�(bi ;1)]�i +
dX
i=1

[k�(ai ;2) _ k�(bi ;2)]�i ;

with

k�(x) =
x� � �x + �� 1

�(�� 1) :
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Rare event performance measures and Rényi divergence

For min/max optimum with regard to Q, should solve

min

8<:g0
�


��

�
 � � +

1


dX
i=1

[�ieci � �i�i (1� eci )]+ : �i � 0;
dX
i=1

�i = 1

9=; ;
where min is over  � � and f�ig.



Summary

Risk-sensitive control and relative entropy give a useful approach to
certain problems of optimization under model uncertainty for ordinary
costs.

Costs based on rare events require a di¤erent approach, and we
propose a related one based on risk-sensitive control and Renyi
divergence.

Initial applications are to control of queuing models to handle, among
other things, old complaints regarding service time distributions.

Tightness of the bounds, in the sense that there is a model within Q
for which the bounds give equality, has been established for some
circumstances (e.g. � > 0 small), but is an area that needs more
investigation.
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